Search results for "Cardiomyocytes"
showing 9 items of 9 documents
PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich Ataxia
2020
Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy, and increased incidence in diabetes. The underlying pathophysiological mechanism of FRDA, driven by a significantly decreased expression of frataxin (FXN), involves increased oxidative stress, reduced activity of enzymes containing iron‑sulfur clus-ters (ISC), defective energy production, calcium dyshomeostasis, and impaired mitochondrial biogenesis, leading to mitochondrial dysfunction. The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor playing a key role in mito…
Circulating exosomes deliver free fatty acids from the bloodstream to cardiac cells: Possible role of CD36
2019
Regulation of circulating free fatty acid (FFA) levels and delivery is crucial to maintain tissue homeostasis. Exosomes are nanomembranous vesicles that are released from diverse cell types and mediate intercellular communication by delivering bioactive molecules. Here, we sought to investigate the uptake of FFAs by circulating exosomes, the delivery of FFA-loaded exosomes to cardiac cells and the possible role of the FFA transporter CD36 in these processes. Circulating exosomes were purified from the serum of healthy donors after an overnight fast (F) or 20 minutes after a high caloric breakfast (postprandial, PP). Western blotting, Immunogold Electron Microscopy and FACS analysis of circu…
Changes in the spatial distribution of the Purkinje network after acute myocardial infarction in the pig
2018
Purkinje cells (PCs) are more resistant to ischemia than myocardial cells, and are suspected to participate in ventricular arrhythmias following myocardial infarction (MI). Histological studies afford little evidence on the behavior and adaptation of PCs in the different stages of MI, especially in the chronic stage, and no quantitative data have been reported to date beyond subjective qualitative depictions. The present study uses a porcine model to present the first quantitative analysis of the distal cardiac conduction system and the first reported change in the spatial distribution of PCs in three representative stages of MI: an acute model both with and without reperfusion; a subacute …
Spontaneous Cardiomyocyte Differentiation From Adipose Tissue Stroma Cells
2004
Cardiomyocyte regeneration is limited in adult life. Thus, the identification of a putative source of cardiomyocyte progenitors is of great interest to provide a usable model in vitro and new perspective in regenerative therapy. As adipose tissues were recently demonstrated to contain pluripotent stem cells, the emergence of cardiomyocyte phenotype from adipose-derived cells was investigated. We demonstrated that rare beating cells with cardiomyocyte features could be identified after culture of adipose stroma cells without addition of 5-azacytidine. The cardiomyocyte phenotype was first identified by morphological observation, confirmed with expression of specific cardiac markers, immunocy…
MiR-133 Modulates the β1Adrenergic Receptor Transduction Cascade.
2014
Rationale : The sympathetic nervous system plays a fundamental role in the regulation of myocardial function. During chronic pressure overload, overactivation of the sympathetic nervous system induces the release of catecholamines, which activate β-adrenergic receptors in cardiomyocytes and lead to increased heart rate and cardiac contractility. However, chronic stimulation of β-adrenergic receptors leads to impaired cardiac function, and β-blockers are widely used as therapeutic agents for the treatment of cardiac disease. MicroRNA-133 (miR-133) is highly expressed in the myocardium and is involved in controlling cardiac function through regulation of messenger RNA translation/stability. …
Heat Shock Protein-60 and Risk for Cardiovascular Disease
2011
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. There is growing evidence that molecularchaperones, many of which are heat shock proteins HSPs, are involved in CVD pathogenesis. In this review we focus on HSP60,the human mitochondrial chaperone that also displays extramitochondrial and extracellular functions. HSP60 is typically cytoprotectivebut a number of stress conditions determine its conversion to a potentially toxic molecule for cells and tissues. We present illustrative examplesof specific subtypes of CVD where HSP60 is implicated in the initiation and/or progression of disease. The data not only indicatea pathogenic role for HSP60 but also its …
In vitro simulation of spiral waves in cardiomyocyte networks using multi-electrode array technology
2009
International audience; We aimed thus to provide new insights into the cellular origin of the fibrillation phenomenon by exploring the impulse propagation between cardiac myocytes in confluent monolayers of cultured cardiomyocytes (CM),
Synthetic/ECM-inspired hybrid platform for hollow microcarriers with ROS-triggered nanoporation hallmarks
2017
Reactive oxygen species (ROS) are key pathological signals expressed in inflammatory diseases such as cancer, ischemic conditions and atherosclerosis. An ideal drug delivery system should not only be responsive to these signals but also should not elicit an unfavourable host response. This study presents an innovative platform for drug delivery where a natural/synthetic composite system composed of collagen type I and a synthesized polythioether, ensures a dual stimuli-responsive behaviour. Collagen type I is an extracellular matrix constituent protein, responsive to matrix metalloproteinases (MMP) cleavage per se. Polythioethers are stable synthetic polymers characterized by the presence o…
Cytoskeleton mediates negative inotropism and lusitropism of chromogranin A-derived peptides (human vasostatin1-78 and rat CgA(1-64)) in the rat heart
2010
Cytoskeleton scaffold in cardiac myocytes provides structural support and compartmentalization of intracellular components. It is implicated in cardiac pathologies including hypertrophy and failure, playing a key role in the determinism of contractile and diastolic dysfunctions. Chromogranin A (CgA) and its derived peptides have revealed themselves as novel cardiovascular modulators. In humans, normal CgA levels considerably increase in several pathologies, including heart failure. Recent data have shown on the unstimulated rat heart that human recombinant Vasostatin-1 (hrVS-1) and rat chromogranin A 1-64 (rCgA(1-64)) induce negative inotropic and lusitropic effects counteracting the beta-a…